PublicationsΒΆ

The recommended reference for the current version of the RPMDrate code is to give Reference [1]. Reference [2] is also recommended in certain cases because it provides published explanations of the methodology used in the code.

[1] Suleimanov, Yu. V.; Allen, J. W.; Green, W. H. RPMDrate: bimolecular chemical reaction rates for ring polymer molecular dynamics, Comp. Phys. Comm. 2013, 184, 833.

[2] Suleimanov, Yu. V.; Collepardo-Guevara, R.; Manolopoulos, D. E.; Bimolecular reaction rates from ring polymer molecular dynamics: Application to \(\mathrm{CH_4 + H} \rightarrow \mathrm{CH_3 + H_2}\), J. Chem. Phys. 2011, 134, 044131.

RPMDrate theory review:

[3] Suleimanov, Yu. V.; Aoiz, F. J.; Guo, H. Chemical Reaction Rate Coefficients from Ring Polymer Molecular Dynamics: Theory and Practical Applications, J. Phys. Chem. A, 2016, 120, 8488.

../_images/rpmdrate_review.jpg

Other related references:

[4] Collepardo-Guevara, R.; Suleimanov, Yu. V.; Manolopoulos, D. E. Bimolecular reaction rates from ring polymer molecular dynamics, J. Chem. Phys. 2009, 130, 174713.

[5] Perez de Tudela, R.; Aoiz, F. J.; Suleimanov, Yu. V.; Manolopoulos, D. E. Chemical reaction rates from ring polymer molecular dynamics: Zero point energy conservation in \(\mathrm{Mu + H_2} \rightarrow \mathrm{MuH + H}\), J. Phys. Chem. Lett. 2012, 3, 493.

[6] Suleimanov, Yu. V.; Perez de Tudela, R.; Jambrina, P. G.; Castillo J. P.; Saez-Rabanoz, V.; Aoiz, F. J.; Manolopoulos, D. E. A ring polymer molecular dynamics study on the family of isotopologues of the \(\mathrm{H + H_2}\) reaction, Phys. Chem. Chem. Phys. 2013, 15, 3655.

[7] Yongle, L.; Suleimanov, Yu. V.; Yang, M.; Green, W. H.; Guo, H. Ring polymer molecular dynamics calculations of thermal rate constants for the \(\mathrm{O(^3P) + CH_4} \rightarrow \mathrm{OH + CH_3}\) reaction: Contributions of quantum effects, J. Phys. Chem. Lett. 2013, 4, 48.

[8] Yongle, L.; Suleimanov, Yu. V.; Yang, M.; Green, W. H.; Guo, H. Rate constants and kinetic isotope effects of the \(\mathrm{H/D/Mu+CH_4}\) reactions from ring polymer molecular dynamics, J. Chem. Phys., 2013, 138, 094307.

[9] Allen, J. W.; Green, W. H.; Li, Y.; Guo, H.; Suleimanov, Y. V. Communication: Full dimensional quantum rate coefficients and kinetic isotope effects from ring polymer molecular dynamics for a seven-atom reaction \(\mathrm{OH + CH_4} \rightarrow \mathrm{CH_3 + H_2O}\), J. Chem. Phys. 2013, 138, 221103.

[10] Perez de Tudela, R.; Suleimanov, Y. V.; Menendez, M.; Castillo, J. F.; Aoiz, F. J. A ring polymer molecular dynamics study on the \(\mathrm{Cl + O_3} \rightarrow \mathrm{ClO + O_2}\) reaction, Phys. Chem. Chem. Phys., 2014, 16, 2920.

[11] Espinosa-Garcia, J.; Fernandez-Ramos, A.; Suleimanov, Y. V.; Corchado, J. C. Theoretical study of the \(\mathrm{F(^2P) + NH_3}\) hydrogen abstraction reaction: Mechanism and kinetics, J. Phys. Chem. A, 2014, 118, 554.

[12] Li, Y.; Suleimanov, Y. V.; Guo, H. Ring-Polymer Molecular Dynamics Rate Coefficient Calculations for Insertion Reactions: \(\mathrm{X + H_2 \rightarrow HX + H (X= N, O)}\), J. Phys. Chem. Lett. 2014, 5, 700.

[13] Yongle, L.; Suleimanov, Yu. V.; Yang, M.; Green, W. H.; Guo, H. Quantum rate coefficients and kinetic isotope effect for the reaction \(\mathrm{Cl + CH_4} \rightarrow \mathrm{HCl + CH_3}\), J. Phys. Chem. A, 2014, 118, 1989.

[14] Gonzalez-Lavado, E.; Carlos Corchado, J.; Suleimanov, Y. V.; Green, W. H.; Espinosa-Garcia J. Theoretical Kinetics Study of the \(\mathrm{O(^3P) + CH_4/CD_4}\) Hydrogen Abstraction Reaction: The Role of Anharmonicity, Recrossing Effects and Quantum Mechanical Tunneling, J. Phys. Chem. A, 2014, 118, 3243.

[15] de Tudela, R. P.; Suleimanov, Yu. V.; Richardson, J. O.; Green, W. H.; Rabanos, V. S.; Aoiz, F. J. Stress test for quantum dynamics approximations: deep tunneling in the Muonium exchange reaction D + HMu \(\mathrm{\rightarrow }\) DMu + H, J. Phys. Chem. Lett. 2014, 5, 4219.

[16] Suleimanov, Yu. V.; Kong, W. J.; Guo, H.; Green, W. H. Ring-Polymer Molecular Dynamics: Rate Coefficient Calculations for Energetically Symmetric (Near Thermoneutral) Insertion Reactions \(\mathrm{(X + H_2)} \rightarrow \mathrm{HX + H (X = C(^1D), S(^1D))}\), J. Chem. Phys. 2014, 141, 244103.

[17] Hele, T.; Suleimanov, Yu. V. Should Thermostatted Ring Polymer Molecular Dynamics be used to calculate thermal reaction rates?, J. Chem. Phys. 2015, 143, 074107.

[18] Suleimanov, Yu. V.; Espinosa-Garcia, J. Recrossing and Tunneling in the Kinetics Study of the \(\mathrm{OH + CH_4} \mathrm{\rightarrow H_2O + CH_3}\) Reaction, J. Phys. Chem. B, 2016, 120, 1418.

[19] Hickson, K. M.; Loison, J.-C.; Guo, H.; Suleimanov, Yu. V. Ring-polymer molecular dynamics for the prediction of low-temperature rates: An investigation of the \(\mathrm{C(^1D) + H_2}\) reaction, J. Phys. Chem. Lett. 2015, 6, 4194.

[20] Arseneau, D. J.; Fleming, D. G.; Li, Y.; Li, J.; Suleimanov, Yu. V.; Guo, H. Rate Coefficient for the \(\mathrm{^4He\mu + CH_4}\) Reaction at 500 K: Comparison Between Theory and Experiment and with the \(\mathrm{Mu + CH_4}\) Reaction over a Factor of 36 in Atomic Mass, J. Phys. Chem. B, 2016, 120, 1641.

[21] Meng, Q.; Chen, J.; Zhang, D. H. Communication: Rate coefficients of the \(\mathrm{(X + CH_4)} \rightarrow \mathrm{H_2 + CH_3}\) reaction from ring polymer molecular dynamics on a highly accurate potential energy surface, J. Chem. Phys. 2015, 143, 101102.

[22] Meng, Q.; Chen, J.; Zhang, D. H. Ring Polymer Molecular Dynamics Fast Computation of Rate Coefficients on Accurate Potential Energy Surfaces in Local Configuration Space: Application to the Abstraction of Hydrogen from Methane, J. Chem. Phys. 2016, 144, 154312.

[23] Zuo, J.; Li, Y.; Guo, H.; Xie, D. Rate Coefficients of the \(\mathrm{HCl + OH} \rightarrow \mathrm{Cl + H_2O}\) Reaction From Ring Polymer Molecular Dynamics, J. Phys. Chem. A 2016, 120, 3433.

[24] Bai, M.; Lu, D.; Li, Y.; Li, J. Ring-polymer molecular dynamical calculations for the \(\mathrm{F + HCl} \rightarrow \mathrm{HF + Cl}\) reaction on the ground \(1^{2}A'\) potential energy surface, Phys. Chem. Chem. Phys. 2016, DOI: 10.1039/C6CP03306G.

[25] Meng, Q.; Hickson, K. M.; Shao, K.; Loison, J.-C.; Zhang, D. H. Theoretical and experimental investigations of rate coefficients of \(\mathrm{O(^1D) + CH_4}\) at low temperature, Phys. Chem. Chem. Phys. 2016, 18, 29286.

[26] Rampino, S.; Suleimanov, Y. V. Thermal Rate Coefficients for the Astrochemical Process \(\mathrm{C + CH^+} \rightarrow \mathrm{C_2^+ + H}\) by Ring Polymer Molecular Dynamics, J. Phys. Chem. A 2016, 120, 9887.

[27] Hickson, K. M.; Suleimanov, Y. V. An experimental and theoretical investigation of the \(\mathrm{C(^1D) + D_2}\) reaction, Phys. Chem. Chem. Phys. 2017, 19, 480.

[28] Hickson, K. M.; Suleimanov, Y. V. Low-Temperature Experimental and Theoretical Rate Constants for the \(\mathrm{O(^1D) + H_2}\) Reaction, J. Phys. Chem. A 2017, 121, 1916.

[29] Espinosa-Garcia, J.; Rangel, C.; Suleimanov, Y. V. Kinetics Study of the \(\mathrm{CN+ CH_4}\) hydrogen abstraction reaction based on a new ab initio analytical full-dimensional potential energy surface, Phys. Chem. Chem. Phys. 2017, DOI: 10.1039/C7CP03499G.

[30] Peng, Y.; Jiang, Z.; Chen, J. Mechanism and Kinetics of Methane Combustion, Part I: Thermal Rate Constants for Hydrogen-Abstraction Reaction of \(\mathrm{CH_4 + O(^3P)}\). J. Phys. Chem. A, 2017, 121, 2209.

[31] Steffen, J.; Hartke, B. Cheap but accurate calculation of chemical reaction rate constants from ab initio data, via system-specific, black-box force fields. J. Chem. Phys. 2017, 147, 161701.

[32] Meng, Q.; Chen, J. Ring-polymer molecular dynamics studies on the rate coefficient of the abstraction channel of hydrogen plus ethane, propane, and dimethyl ether. J. Chem. Phys. 2017, 146, 024108.

[33] Zuo, J.; Xie, C.; Guo, H.; Xie, D. Accurate Determination of Tunneling Affected Rate Coefficients: Theory Assessing Experiment. J. Phys. Chem. Lett. 2017, DOI: 10.1021/acs.jpclett.7b01296.

[34] Suleimanov, Y. V. Surface Diffusion of Hydrogen on Ni(100) from Ring Polymer Molecular Dynamics, J. Phys. Chem. C, 2012, 116, 11141.